Toxics Reduction through Energy Efficiency for Boilers

A white paper from the Oregon Environmental Council

April 2006

222 NW Davis Street, Suite 309

Portland, Oregon 97209 Phone: 503-222-1963

Fax: 503-222-1405

Web: http://www.oeconline.org

Email: info@oeconline.org

Prepared by Daniel Etra

Acknowledgements

OEC received funding for this project from the United States Environmental Protection Agency (EPA) and would like to thank all of the facilities that agreed to participate in this project as well as the Oregon Department of Environmental Quality, the Oregon Department of Energy, the Oregon State University Industrial Assessment Center, the Oregon Boiler and Pressure Vessel Association, the Climate Trust, and the Department of Consumer and Business Services for helping to make this project a success.

Copyright April 2006 Oregon Environmental Council

For copies of this report, contact:

Oregon Environmental Council 222 NW Davis St, Suite 309 Portland, OR 97209 503-222-1963 info@oeconline.org

Or on the Web at www.oeconline.org

Toxics
Reduction
through
Energy
Efficiency
for Boilers

Toxics
Reduction
through
Energy
Efficiency
for Boilers

Contents

Sections

1.	Executive Summary	5
2.	Introduction	7
3.	Project Background	11
3.	.1. Purpose	11
3.	.2. Boiler Types and General Efficiency Improvement	
	Methods	13
3.	.3. Overview of Oregon Facilities and Emissions	16
3.	.4. Boiler-Related Rules and Regulations	17
3.	.5. School-Related Energy Efficiency Programs	19
3.	.6. Financing Mechanisms for Boiler Upgrades	20
4.	Assessment Findings and Implementation	25
4.	.1. Industrial Facilities	25
4.	.2. Institutional Facilities	30
4.	.3. Summary of Findings	33
5.	Conclusions and Policy Recommendations	35
5.	.1. Recommendations	36
6.	Additional Resources	38
7.	Appendices	40
7.	.1. Appendix I: About OEC and Project Partners	40
7.	.2. Appendix II: Extrapolated Statewide Energy Use	
	and Toxics Reduction	43
7.	.3. Appendix III: Conversion Tables and Emissions	
	Factors	45
Tah	oles	
1 a	able 3-1: Count of Boiler Types Evaluated, by	1 =
т	Facility Type	15
1 a	able 3-2: Mercury Emissions from Boilers in	1 17
T	Oregon, DEQ Emissions Inventory	17
1 a	ıble 4-1: Industrial Energy Efficiency Audit	٥-
T	Universe	25
1 a	able 4-2: Breakdown of Savings, Costs, and	<u> </u>
T	Payback Periods for Industrial Facilities	27
1 a	able 4-3: Fuel and Emissions Reductions from	20
Œ	Implementations at Industrial Facilities	30
Ta	ıble 4-4: Institutional Energy Efficiency Audit	24
	Universe	31

Table 4-5: Summary of Results from Institutional
Boiler Tune-ups32
Table 7-1: Estimated Potential Dollar Savings and
Emissions Reductions from Efficiency
Increases at Oregon Public Schools,
Statewide43
Table 7-2: Estimated Potential Fuel and Emissions
Reductions from Efficiency Increases at
Title-V and non-Title-V Industrial,
Commercial, Institutional, and Electric
Generation Facilities, Statewide44
Table 7-3: Fuel to Energy Conversions45
Table 7-4: Emissions Factors46
Figures
Figure 3-1: Units Affected by MACT Standard19
Figures 4-1: Potential Energy and Cost Savings,
Implementation Costs, and Average
Payback Periods for Industrial Boilers27

"OEC found opportunities to increase boiler efficiency at almost every single facility visited."

1. Executive Summary

Improving energy efficiency of boilers has two primary beneficial outcomes: it lowers facility fuel costs and it reduces emissions of toxic pollutants and greenhouse gases. Based on findings from a similar study carried out by the Delta Institute in Wisconsin in 2002, the Oregon Environmental Council (OEC) set out to reduce toxic emissions in Oregon by improving the energy efficiency of boilers.

To do this, OEC partnered with Oregon State University's Industrial Assessment Center (IAC), the Oregon Department of Energy (ODOE), the Oregon Department of Environmental Quality (DEQ), and a private consultant to offer free energy efficiency audits and tune-ups to small- to medium-sized industrial and institutional boilers in Oregon.

OEC found opportunities to increase boiler efficiency at almost every single facility visited, with substantial reductions in fuel costs, toxic pollutant emissions, and greenhouse gas emissions. Specifically, this study found that if boiler efficiency improvements were implemented at *all* participating <u>industrial</u> facilities, the *potential annual savings and reduced emissions* would be:

- \$437,406 dollars of fuel cost savings
- 29,476 metric tons of CO₂ emissions mitigated
- 1.16 pounds of mercury emissions mitigated

Furthermore, by offering free boiler tune-ups to participating <u>institutional</u> facilities, the actual savings and reduced emissions were:

- Saved Oregon public schools a total of \$20,106
- Prevented 85.3 metric tons of CO₂ from being released
- Kept 1.40 grams of mercury out of the air and water.