Toxics Reduction through Energy Efficiency for Boilers

A white paper from the Oregon Environmental Council

April 2006

222 NW Davis Street, Suite 309
Portland, Oregon 97209
Phone: 503-222-1963
Fax: 503-222-1405
Web: http://www.oeconline.org
Email: info@oeconline.org

Prepared by Daniel Etra
Acknowledgements

OEC received funding for this project from the United States Environmental Protection Agency (EPA) and would like to thank all of the facilities that agreed to participate in this project as well as the Oregon Department of Environmental Quality, the Oregon Department of Energy, the Oregon State University Industrial Assessment Center, the Oregon Boiler and Pressure Vessel Association, the Climate Trust, and the Department of Consumer and Business Services for helping to make this project a success.
Contents

Sections

1. Executive Summary ... 5
2. Introduction .. 7
3. Project Background .. 11
 3.1. Purpose .. 11
 3.2. Boiler Types and General Efficiency Improvement Methods ... 13
 3.3. Overview of Oregon Facilities and Emissions 16
 3.4. Boiler-Related Rules and Regulations......................... 17
 3.5. School-Related Energy Efficiency Programs.............. 19
 3.6. Financing Mechanisms for Boiler Upgrades.............. 20
4. Assessment Findings and Implementation 25
 4.1. Industrial Facilities... 25
 4.2. Institutional Facilities .. 30
 4.3. Summary of Findings .. 33
5. Conclusions and Policy Recommendations 35
 5.1. Recommendations.. 36
6. Additional Resources... 38
7. Appendices.. 40
 7.1. Appendix I: About OEC and Project Partners 40
 7.2. Appendix II: Extrapolated Statewide Energy Use and Toxics Reduction ... 43
 7.3. Appendix III: Conversion Tables and Emissions Factors.. 45

Tables

Table 3-1: Count of Boiler Types Evaluated, by Facility Type ... 15
Table 3-2: Mercury Emissions from Boilers in Oregon, DEQ Emissions Inventory 17
Table 4-1: Industrial Energy Efficiency Audit Universe... 25
Table 4-2: Breakdown of Savings, Costs, and Payback Periods for Industrial Facilities 27
Table 4-3: Fuel and Emissions Reductions from Implementations at Industrial Facilities 30
Table 4-4: Institutional Energy Efficiency Audit Universe.. 31
Table 4-5: Summary of Results from Institutional Boiler Tune-ups

Table 7-1: Estimated Potential Dollar Savings and Emissions Reductions from Efficiency Increases at Oregon Public Schools, Statewide

Table 7-2: Estimated Potential Fuel and Emissions Reductions from Efficiency Increases at Title-V and non-Title-V Industrial, Commercial, Institutional, and Electric Generation Facilities, Statewide

Table 7-3: Fuel to Energy Conversions

Table 7-4: Emissions Factors

Figures

Figure 3-1: Units Affected by MACT Standard

Figures 4-1: Potential Energy and Cost Savings, Implementation Costs, and Average Payback Periods for Industrial Boilers
1. Executive Summary

Improving energy efficiency of boilers has two primary beneficial outcomes: it lowers facility fuel costs and it reduces emissions of toxic pollutants and greenhouse gases. Based on findings from a similar study carried out by the Delta Institute in Wisconsin in 2002, the Oregon Environmental Council (OEC) set out to reduce toxic emissions in Oregon by improving the energy efficiency of boilers.

To do this, OEC partnered with Oregon State University’s Industrial Assessment Center (IAC), the Oregon Department of Energy (ODOE), the Oregon Department of Environmental Quality (DEQ), and a private consultant to offer free energy efficiency audits and tune-ups to small- to medium-sized industrial and institutional boilers in Oregon.

OEC found opportunities to increase boiler efficiency at almost every single facility visited, with substantial reductions in fuel costs, toxic pollutant emissions, and greenhouse gas emissions. Specifically, this study found that if boiler efficiency improvements were implemented at all participating industrial facilities, the potential annual savings and reduced emissions would be:

- $437,406 dollars of fuel cost savings
- 29,476 metric tons of CO$_2$ emissions mitigated
- 1.16 pounds of mercury emissions mitigated

Furthermore, by offering free boiler tune-ups to participating institutional facilities, the actual savings and reduced emissions were:

- Saved Oregon public schools a total of $20,106
- Prevented 85.3 metric tons of CO$_2$ from being released
- Kept 1.40 grams of mercury out of the air and water.